Skip to article frontmatterSkip to article content

Geary’s C

Geary’s C is a global measure of spatial autocorrelation used in spatial data analysis to determine the overall degree of spatial dependency in a dataset. It quantifies the degree to which values in a dataset are similar to or different from neighboring values, considering the entire study area. Unlike Moran’s I, Geary’s C focuses on the distance between value of a location and its neighbors rather than their distances to the mean value.

C=(N1)ijwij(xixj)22S0i(xixˉ)2C = \frac{(N-1)\sum_i\sum_j w_{ij}(x_i-x_j)^{2}}{2S_0\sum_i(x_i-\bar{x})^{2}}

In this equation:

Local Geary’s C

The Local Geary:

ci=jwij(xixj)22S0c_i = \frac{\sum_j w_{ij}(x_i - x_j)^2}{2S_0}

Unlike the global Geary’s C, the local version provides location-specific information about spatial autocorrelation, allowing for the identification of spatial clusters and outliers. Low values of the Local Geary’s C indicate positive spatial autocorrelation (similar values cluster together), while high values indicate negative spatial autocorrelation (dissimilar values are close to each other).

Comparing Global vs. Local

global=a.[icomponent(i)]\text{global} = a . [\sum_i \text{component}(i)]

Global

C=(N1)ijwij(xixj)22S0i(xixˉ)2C = \frac{(N-1)\sum_i\sum_j w_{ij}(x_i-x_j)^{2}}{2S_0\sum_i(x_i-\bar{x})^{2}}
C=(N1)2S0i(xixˉ)2×ijwij(xixj)2C = \frac{(N-1)}{2S_0\sum_i(x_i-\bar{x})^{2}} \times \sum_i\sum_j w_{ij}(x_i-x_j)^{2}
C=(N1)i(xixˉ)2×i12S0×jwij(xixj)2C = \frac{(N-1)}{\sum_i(x_i-\bar{x})^{2}} \times \sum_i \frac{1}{2S_0}\times \sum_j w_{ij}(x_i-x_j)^{2}
C=(N1)i(xixˉ)2×iciC = \frac{(N-1)}{\sum_i(x_i-\bar{x})^{2}} \times \sum_i c_i

Local

ci=jwij(xixj)22S0c_i = \frac{\sum_j w_{ij}(x_i - x_j)^2}{2S_0}
ci=12S0×jwij(xixj)2c_i = \frac{1}{2S_0} \times \sum_j w_{ij}(x_i - x_j)^2

Interpretation

An example

Take an example: the donations data (Guerry data)

The data distribution (based on Natural Breaks).

The data distribution (based on Natural Breaks).

Local Significance Map

Local Significance Map

Local Significance Map

Local Cluster Map

Local Cluster Map

Local Cluster Map

Sensitivity Analysis

Sensitivity Analysis

Sensitivity Analysis

Local Moran’s I vs. Local Geary’s C

Comparison between local Moran’s I and local Geary’s C

Comparison between local Moran’s I and local Geary’s C

Moran’s I vs. Geary’s C